Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linking Comparative Genomics of Nine Potato-Associated Pseudomonas Isolates With Their Differing Biocontrol Potential Against Late Blight.

Identifieur interne : 000133 ( Main/Exploration ); précédent : 000132; suivant : 000134

Linking Comparative Genomics of Nine Potato-Associated Pseudomonas Isolates With Their Differing Biocontrol Potential Against Late Blight.

Auteurs : Mout De Vrieze [Suisse] ; Adithi R. Varadarajan [Suisse] ; Kerstin Schneeberger [Suisse] ; Aurélien Bailly [Suisse] ; Rudolf P. Rohr [Suisse] ; Christian H. Ahrens [Suisse] ; Laure Weisskopf [Suisse]

Source :

RBID : pubmed:32425922

Abstract

For plants, the advantages of associating with beneficial bacteria include plant growth promotion, reduction of abiotic and biotic stresses and enhanced protection against various pests and diseases. Beneficial bacteria rightly equipped for successful plant colonization and showing antagonistic activity toward plant pathogens seem to be actively recruited by plants. To gain more insights into the genetic determinants responsible for plant colonization and antagonistic activities, we first sequenced and de novo assembled the complete genomes of nine Pseudomonas strains that had exhibited varying antagonistic potential against the notorious oomycete Phytophthora infestans, placed them into the phylogenomic context of known Pseudomonas biocontrol strains and carried out a comparative genomic analysis to define core, accessory (i.e., genes found in two or more, but not all strains) and unique genes. Next, we assessed the colonizing abilities of these strains and used bioassays to characterize their inhibitory effects against different stages of P. infestans' lifecycle. The phenotype data were then correlated with genotype information, assessing over three hundred genes encoding known factors for plant colonization and antimicrobial activity as well as secondary metabolite biosynthesis clusters predicted by antiSMASH. All strains harbored genes required for successful plant colonization but also distinct arsenals of antimicrobial compounds. We identified genes coding for phenazine, hydrogen cyanide, 2-hexyl, 5-propyl resorcinol and pyrrolnitrin synthesis, as well as various siderophores, pyocins and type VI secretion systems. Additionally, the comparative genomic analysis revealed about a hundred accessory genes putatively involved in anti-Phytophthora activity, including a type II secretion system (T2SS), several peptidases and a toxin. Transcriptomic studies and mutagenesis are needed to further investigate the putative involvement of the novel candidate genes and to identify the various mechanisms involved in the inhibition of P. infestans by different Pseudomonas strains.

DOI: 10.3389/fmicb.2020.00857
PubMed: 32425922
PubMed Central: PMC7204214


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Linking Comparative Genomics of Nine Potato-Associated
<i>Pseudomonas</i>
Isolates With Their Differing Biocontrol Potential Against Late Blight.</title>
<author>
<name sortKey="De Vrieze, Mout" sort="De Vrieze, Mout" uniqKey="De Vrieze M" first="Mout" last="De Vrieze">Mout De Vrieze</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Varadarajan, Adithi R" sort="Varadarajan, Adithi R" uniqKey="Varadarajan A" first="Adithi R" last="Varadarajan">Adithi R. Varadarajan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil</wicri:regionArea>
<wicri:noRegion>Wädenswil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schneeberger, Kerstin" sort="Schneeberger, Kerstin" uniqKey="Schneeberger K" first="Kerstin" last="Schneeberger">Kerstin Schneeberger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil</wicri:regionArea>
<wicri:noRegion>Wädenswil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bailly, Aurelien" sort="Bailly, Aurelien" uniqKey="Bailly A" first="Aurélien" last="Bailly">Aurélien Bailly</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of Zurich, Zurich</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rohr, Rudolf P" sort="Rohr, Rudolf P" uniqKey="Rohr R" first="Rudolf P" last="Rohr">Rudolf P. Rohr</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahrens, Christian H" sort="Ahrens, Christian H" uniqKey="Ahrens C" first="Christian H" last="Ahrens">Christian H. Ahrens</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil</wicri:regionArea>
<wicri:noRegion>Wädenswil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weisskopf, Laure" sort="Weisskopf, Laure" uniqKey="Weisskopf L" first="Laure" last="Weisskopf">Laure Weisskopf</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32425922</idno>
<idno type="pmid">32425922</idno>
<idno type="doi">10.3389/fmicb.2020.00857</idno>
<idno type="pmc">PMC7204214</idno>
<idno type="wicri:Area/Main/Corpus">000188</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000188</idno>
<idno type="wicri:Area/Main/Curation">000188</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000188</idno>
<idno type="wicri:Area/Main/Exploration">000188</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Linking Comparative Genomics of Nine Potato-Associated
<i>Pseudomonas</i>
Isolates With Their Differing Biocontrol Potential Against Late Blight.</title>
<author>
<name sortKey="De Vrieze, Mout" sort="De Vrieze, Mout" uniqKey="De Vrieze M" first="Mout" last="De Vrieze">Mout De Vrieze</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Varadarajan, Adithi R" sort="Varadarajan, Adithi R" uniqKey="Varadarajan A" first="Adithi R" last="Varadarajan">Adithi R. Varadarajan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil</wicri:regionArea>
<wicri:noRegion>Wädenswil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schneeberger, Kerstin" sort="Schneeberger, Kerstin" uniqKey="Schneeberger K" first="Kerstin" last="Schneeberger">Kerstin Schneeberger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil</wicri:regionArea>
<wicri:noRegion>Wädenswil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bailly, Aurelien" sort="Bailly, Aurelien" uniqKey="Bailly A" first="Aurélien" last="Bailly">Aurélien Bailly</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of Zurich, Zurich</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rohr, Rudolf P" sort="Rohr, Rudolf P" uniqKey="Rohr R" first="Rudolf P" last="Rohr">Rudolf P. Rohr</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahrens, Christian H" sort="Ahrens, Christian H" uniqKey="Ahrens C" first="Christian H" last="Ahrens">Christian H. Ahrens</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil</wicri:regionArea>
<wicri:noRegion>Wädenswil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weisskopf, Laure" sort="Weisskopf, Laure" uniqKey="Weisskopf L" first="Laure" last="Weisskopf">Laure Weisskopf</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For plants, the advantages of associating with beneficial bacteria include plant growth promotion, reduction of abiotic and biotic stresses and enhanced protection against various pests and diseases. Beneficial bacteria rightly equipped for successful plant colonization and showing antagonistic activity toward plant pathogens seem to be actively recruited by plants. To gain more insights into the genetic determinants responsible for plant colonization and antagonistic activities, we first sequenced and
<i>de novo</i>
assembled the complete genomes of nine
<i>Pseudomonas</i>
strains that had exhibited varying antagonistic potential against the notorious oomycete
<i>Phytophthora infestans</i>
, placed them into the phylogenomic context of known
<i>Pseudomonas</i>
biocontrol strains and carried out a comparative genomic analysis to define core, accessory (i.e., genes found in two or more, but not all strains) and unique genes. Next, we assessed the colonizing abilities of these strains and used bioassays to characterize their inhibitory effects against different stages of
<i>P. infestans</i>
' lifecycle. The phenotype data were then correlated with genotype information, assessing over three hundred genes encoding known factors for plant colonization and antimicrobial activity as well as secondary metabolite biosynthesis clusters predicted by antiSMASH. All strains harbored genes required for successful plant colonization but also distinct arsenals of antimicrobial compounds. We identified genes coding for phenazine, hydrogen cyanide, 2-hexyl, 5-propyl resorcinol and pyrrolnitrin synthesis, as well as various siderophores, pyocins and type VI secretion systems. Additionally, the comparative genomic analysis revealed about a hundred accessory genes putatively involved in anti-
<i>Phytophthora</i>
activity, including a type II secretion system (T2SS), several peptidases and a toxin. Transcriptomic studies and mutagenesis are needed to further investigate the putative involvement of the novel candidate genes and to identify the various mechanisms involved in the inhibition of
<i>P. infestans</i>
by different
<i>Pseudomonas</i>
strains.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32425922</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Linking Comparative Genomics of Nine Potato-Associated
<i>Pseudomonas</i>
Isolates With Their Differing Biocontrol Potential Against Late Blight.</ArticleTitle>
<Pagination>
<MedlinePgn>857</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.00857</ELocationID>
<Abstract>
<AbstractText>For plants, the advantages of associating with beneficial bacteria include plant growth promotion, reduction of abiotic and biotic stresses and enhanced protection against various pests and diseases. Beneficial bacteria rightly equipped for successful plant colonization and showing antagonistic activity toward plant pathogens seem to be actively recruited by plants. To gain more insights into the genetic determinants responsible for plant colonization and antagonistic activities, we first sequenced and
<i>de novo</i>
assembled the complete genomes of nine
<i>Pseudomonas</i>
strains that had exhibited varying antagonistic potential against the notorious oomycete
<i>Phytophthora infestans</i>
, placed them into the phylogenomic context of known
<i>Pseudomonas</i>
biocontrol strains and carried out a comparative genomic analysis to define core, accessory (i.e., genes found in two or more, but not all strains) and unique genes. Next, we assessed the colonizing abilities of these strains and used bioassays to characterize their inhibitory effects against different stages of
<i>P. infestans</i>
' lifecycle. The phenotype data were then correlated with genotype information, assessing over three hundred genes encoding known factors for plant colonization and antimicrobial activity as well as secondary metabolite biosynthesis clusters predicted by antiSMASH. All strains harbored genes required for successful plant colonization but also distinct arsenals of antimicrobial compounds. We identified genes coding for phenazine, hydrogen cyanide, 2-hexyl, 5-propyl resorcinol and pyrrolnitrin synthesis, as well as various siderophores, pyocins and type VI secretion systems. Additionally, the comparative genomic analysis revealed about a hundred accessory genes putatively involved in anti-
<i>Phytophthora</i>
activity, including a type II secretion system (T2SS), several peptidases and a toxin. Transcriptomic studies and mutagenesis are needed to further investigate the putative involvement of the novel candidate genes and to identify the various mechanisms involved in the inhibition of
<i>P. infestans</i>
by different
<i>Pseudomonas</i>
strains.</AbstractText>
<CopyrightInformation>Copyright © 2020 De Vrieze, Varadarajan, Schneeberger, Bailly, Rohr, Ahrens and Weisskopf.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De Vrieze</LastName>
<ForeName>Mout</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Varadarajan</LastName>
<ForeName>Adithi R</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schneeberger</LastName>
<ForeName>Kerstin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bailly</LastName>
<ForeName>Aurélien</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rohr</LastName>
<ForeName>Rudolf P</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ahrens</LastName>
<ForeName>Christian H</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weisskopf</LastName>
<ForeName>Laure</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Pseudomonas</Keyword>
<Keyword MajorTopicYN="N">beneficial microorganisms</Keyword>
<Keyword MajorTopicYN="N">biocontrol</Keyword>
<Keyword MajorTopicYN="N">comparative genomics</Keyword>
<Keyword MajorTopicYN="N">de novo genome assembly</Keyword>
<Keyword MajorTopicYN="N">genotype-phenotype correlation</Keyword>
<Keyword MajorTopicYN="N">phyllosphere</Keyword>
<Keyword MajorTopicYN="N">rhizosphere</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32425922</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.00857</ArticleId>
<ArticleId IdType="pmc">PMC7204214</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol. 2018 Jan;20(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29027348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012 Jul;8(7):e1002784</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22792073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 Dec;100(12):1330-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20839963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Sep 15;147(1):81-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8088552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:417-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16719720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2010 May;97(4):389-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20352404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2010 Nov;34(6):1037-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20412310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2000 Oct 1;34(1):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11053734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):E8396-E8405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27956617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 Dec;27(12):2083-2095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29141959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2000 Apr;3(2):215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10744995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2015 Oct;119(4):1112-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26218193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Sep;71(9):5646-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Microbiol. 2013 Oct 30;44(2):623-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24294262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jan;9(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Pathol J. 2018 Feb;34(1):44-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29422787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2015 May 05;6(3):e00285-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25944858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Sep;193(18):4685-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):385-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2002 Apr;4(4):225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12010129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Feb 25;11(2):e0150183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26915094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Nov 23;6:1295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26635763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2016 May 26;4(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27231373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jan;63(2):417-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Oct 29;9:2573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30420845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Aug 19;44(14):6614-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27342282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Jan 15;15(1):9-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24332978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Microbiol. 2012 Oct;43(4):1562-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24031988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2017 Oct 20;12(10):2498-2502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28846366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Dec 15;26(24):3125-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20956244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Aug 17;337(6096):815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22767897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2013 Jun;5(3):393-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2019 May;13(5):1318-1329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30683920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Nov 15;31(22):3691-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26198102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1312-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2014;52:347-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24906124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2016 Jun;5(3):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26987441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Nov 12;9:2706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30483232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Oct;64(10):3563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9758768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Jan 30;9:63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29441050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Jan;55(1):261-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15612933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2016 Nov 25;17(1):238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27887642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2009;63:541-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Jul;38(4):523-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24923764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 May 07;10:924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31134003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Apr;69(4):1875-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 1982 May;48(2):105-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6808915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jun;12(6):1513-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Dec;22(12):1611-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 1;423(6935):81-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Nov 27;6:1309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26640460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Oct;50(1):15-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2014 Jan 23;2(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24459254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Feb 14;152(4):884-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23415234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2019 Sep;109(9):1555-1565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31041882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Jul;28(7):800-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25761208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Feb 09;9:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29479340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1998;36:453-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2012 May;19(5):455-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22506599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2001 Jan;17(1):10-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11163906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2004;58:611-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15487950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jul 31;4:287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23914197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Jul;19(7):699-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16838783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2005 Mar;7(3):443-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15683404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Feb 13;9:143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29487574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Feb 24;8:284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28286498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Dec;188(24):8327-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Feb;8(2):351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Sep 28;46(17):8953-8965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30137508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2015 Sep 26;7(10):2810-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26412856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 May;178(9):2564-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8626323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2016 Sep;106(9):963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27088392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(4):731-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Aug;170(8):3499-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2841289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jul 3;45(W1):W36-W41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28460038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Jun;10(6):563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2018 Dec;75(12):1560-1565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30155671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Feb;81(3):821-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25398872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Apr;11(4):972-987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28045455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2014 Apr 24;2(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24762936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 1998 Sep;82(9):1022-1028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30856829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2011 Apr;24(2):193-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21080032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 Oct;10(10):2527-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26894448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2011 Jul;35(4):652-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21361996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2004 Mar;104(3):1663-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15008629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2016 Oct;59(10):783-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27603265</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Fribourg</li>
<li>Canton de Zurich</li>
</region>
<settlement>
<li>Fribourg</li>
<li>Zurich</li>
</settlement>
<orgName>
<li>Université de Fribourg</li>
<li>Université de Zurich</li>
</orgName>
</list>
<tree>
<country name="Suisse">
<region name="Canton de Fribourg">
<name sortKey="De Vrieze, Mout" sort="De Vrieze, Mout" uniqKey="De Vrieze M" first="Mout" last="De Vrieze">Mout De Vrieze</name>
</region>
<name sortKey="Ahrens, Christian H" sort="Ahrens, Christian H" uniqKey="Ahrens C" first="Christian H" last="Ahrens">Christian H. Ahrens</name>
<name sortKey="Bailly, Aurelien" sort="Bailly, Aurelien" uniqKey="Bailly A" first="Aurélien" last="Bailly">Aurélien Bailly</name>
<name sortKey="Rohr, Rudolf P" sort="Rohr, Rudolf P" uniqKey="Rohr R" first="Rudolf P" last="Rohr">Rudolf P. Rohr</name>
<name sortKey="Schneeberger, Kerstin" sort="Schneeberger, Kerstin" uniqKey="Schneeberger K" first="Kerstin" last="Schneeberger">Kerstin Schneeberger</name>
<name sortKey="Varadarajan, Adithi R" sort="Varadarajan, Adithi R" uniqKey="Varadarajan A" first="Adithi R" last="Varadarajan">Adithi R. Varadarajan</name>
<name sortKey="Weisskopf, Laure" sort="Weisskopf, Laure" uniqKey="Weisskopf L" first="Laure" last="Weisskopf">Laure Weisskopf</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000133 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000133 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32425922
   |texte=   Linking Comparative Genomics of Nine Potato-Associated Pseudomonas Isolates With Their Differing Biocontrol Potential Against Late Blight.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32425922" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024